Kamis, 08 Desember 2011

DAUR SIKLUS KARBON DAN OKSIGEN

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEinP7EzLyRz3DDUm8m-ION28bGFIQTR3yIj5D8kSR2hk3ffIYUa8Ee8HBHqHo0ml6-3KrVgMgRT-7wH_YibQ3CtEJnDDzaqsuqxQMorOu7FfBHmEiFI95NsMVpMeSxPjyUCaymtpW-xEw_P/s1600/daur-karbon.jpg
Secara ringkas, daur karbon merupakan salah satu siklus biogeokimia dimana terjadi pertukaran / perpindahan karbon antara bidang-bidang biosfer, geosfer, hidrosfer, dan atmosfer. Kenapa sering dibarengi dengan oksigen??? hal ini karena siklus karbon sangat terkait dengan oksigen, terutama dalam hal fotosintesis dan respirasi. Sesuai dengan pengertian tadi, ada empat tempat keberadaan untuk karbon, yaitu : Biosfer (di dalam makhluk hidup), Geosfer (di dalam bumi), hidrosfer ( di air), dan atmosfer ( di udara). Siklus karbon terjadi di daratan dan perairan. tidak ada perbedaan yang significant karena tempat yang berbeda tersebut. Yang berbeda hanyalah organismenya.

PROSES DALAM SIKLUS KARBON

Secara umum,  karbon akan diambil dari udara oleh organisme fotoautotrof (tumbuhan, ganggang, dll yang mampu melaksanakan fotosintesis). organisme tersebut, sebut saja tumbuhan, akan memproses karbon menjadi bahan makanan yang disebut karbohidrat, dengan proses kimia sebagai berikut :
6 CO2 + 6 H2O (+Sinar Matahari yg diserap Klorofil) ↔ C6H12O6 + 6 O2
Karbondioksida + Air (+Sinar Matahari yg diserap Klorofil)↔ Glukosa + Oksigen
nah, hasil sintesa karbohidrat itu dimakan para makhluk hidup heterotrof sebagai makanan plus oksigen untuk bernafas. Ngga peduli makhluk herbivora, carnivora, atau omnivora, sumber pertama energi yang tersimpan dalam karbohidrat adalah tumbuhan. Karbon di dalam sistem respirasi akan dilepas kembali dalam bentuk CO2 yang nantinya dilepaskan saat pernafasan. Selain pelepasan CO2 ke udara saat pernafasan, para detrivor (pembusuk) juga melepaskan CO2 ke udara dalam proses pembusukan. Manusia juga tidak kalah peran dalam proses ini. Hasil segala pembakaran, mulai dari pembakaran sampah, pembakaran bahan bakar minyak di dalam kendaraan bermotor, asap pabrik, dan lain-lain juga melepaskan CO2 ke udara. CO2 di udara nantinya akan ditangkap oleh tumbuhan lagi dan siklus mulai dari awal lagi.

Di daratan, proses pengubahan CO2 menjadi karbohidrat dan melepaskan oksigen dilakukan oleh tumbuhan darat, sebaliknya, di daerah perairan, peran ini dimainkan oleh organisme-organisme fotoautotrof perairan seperti ganggang, fitoplankton, dan lain-lain. begitupula dengan peran yang melepaskan CO2 ke udara. Hal itu dilaksanakan oleh para detrovor dan organisme heterotrof. Di daratan ada manusia, kambing, sapi, harimau, dll. di lautan ada berbagai jenis ikan dan makhluk-makhluk perairan.

PERMASALAHAN DALAM SIKLUS KARBON

Di udara, konsentrasi karbondioksida sangat kecil bila dibandingkan dengan oksigen dan nitrogen (kurang dari 0,04 %). akan tetapi gas ini adalah gas rumah kaca yang berperan dalam efek rumah kaca. Penambahan gas ini dapat meningkatkan suhu udara di bumi. Sekarang ini, populasi tumbuhan semakin berkurang (banyak hutan rusak dan lain-lain ) sedangkan kedaraan bermotor bertambah banyak. Jadi kita bisa bayangkan bahwa pelepasan CO2 ke udara tidak sebanding dengan pengubahannya oleh tumbuhan menjadi Karbohidrat. ini akan mempengaruhi keseimbangan atmosfer dan keseimbangan ekosistem di bumi.

Penjelasan lebih lanjut yang cukup lengkap, penulis ambil dari Wikipedia bahasa Indonesia, ensiklopedia bebas. bahan berikut ini bisa digunakan sebagai tambahan.

Siklus karbon adalah siklus biogeokimia dimana karbon dipertukarkan antara biosfer, geosfer, hidrosfer, dan atmosfer Bumi (objek astronomis lainnya bisa jadi memiliki siklus karbon yang hampir sama meskipun hingga kini belum diketahui).
Dalam siklus ini terdapat empat reservoir karbon utama yang dihubungkan oleh jalur pertukaran. Reservoir-reservoir tersebut adalah atmosfer, biosfer teresterial (biasanya termasuk pula freshwater system dan material non-hayati organik seperti karbon tanah (soil carbon)), lautan (termasuk karbon anorganik terlarut dan biota laut hayati dan non-hayati), dan sedimen (termasuk bahan bakar fosil). Pergerakan tahuan karbon, pertukaran karbon antar reservoir, terjadi karena proses-proses kimia, fisika, geologi, dan biologi yang bermacam-macam. Lautan mengadung kolam aktif karbon terbesar dekat permukaan Bumi, namun demikian laut dalam bagian dari kolam ini mengalami pertukaran yang lambat dengan atmosfer.
Neraca karbon global adalah kesetimbangan pertukaran karbon (antara yang masuk dan keluar) antar reservoir karbon atau antara satu putaran (loop) spesifik siklus karbon (misalnya atmosfer - biosfer). Analisis neraca karbon dari sebuah kolam atau reservoir dapat memberikan informasi tentang apakah kolam atau reservoir berfungsi sebagai sumber (source) atau lubuk (sink) karbon dioksida.
Karbon di atmosfer
Bagian terbesar dari karbon yang berada di atmosfer Bumi adalah gas karbon dioksida (CO2). Meskipun jumlah gas ini merupakan bagian yang sangat kecil dari seluruh gas yang ada di atmosfer (hanya sekitar 0,04% dalam basis molar, meskipun sedang mengalami kenaikan), namun ia memiliki peran yang penting dalam menyokong kehidupan. Gas-gas lain yang mengandung karbon di atmosfer adalah metan dan kloroflorokarbon atau CFC (CFC ini merupakan gas artifisial atau buatan). Gas-gas tersebut adalah gas rumah kaca yang konsentrasinya di atmosfer telah bertambah dalam dekade terakhir ini, dan berperan dalam pemanasan global.
Karbon diambil dari atmosfer dengan berbagai cara:
- Ketika matahari bersinar, tumbuhan melakukan fotosintesa untuk mengubah karbon dioksida menjadi karbohidrat, dan melepaskan oksigen ke atmosfer. Proses ini akan lebih banyak menyerap karbon pada hutan dengan tumbuhan yang baru saja tumbuh atau hutan yang sedang mengalami pertumbuhan yang cepat.
- Pada permukaan laut ke arah kutub, air laut menjadi lebih dingin dan CO2 akan lebih mudah larut. Selanjutnya CO2 yang larut tersebut akan terbawa oleh sirkulasi termohalin yang membawa massa air di permukaan yang lebih berat ke kedalaman laut atau interior laut (lihat bagian solubility pump).
- Di laut bagian atas (upper ocean), pada daerah dengan produktivitas yang tinggi, organisme membentuk jaringan yang mengandung karbon, beberapa organisme juga membentuk cangkang karbonat dan bagian-bagian tubuh lainnya yang keras. Proses ini akan menyebabkan aliran karbon ke bawah (lihat bagian biological pump).
- Pelapukan batuan silikat. Tidak seperti dua proses sebelumnya, proses ini tidak memindahkan karbon ke dalam reservoir yang siap untuk kembali ke atmosfer. Pelapukan batuan karbonat tidak memiliki efek netto terhadap CO2 atmosferik karena ion bikarbonat yang terbentuk terbawa ke laut dimana selanjutnya dipakai untuk membuat karbonat laut dengan reaksi yang sebaliknya (reverse reaction).
Karbon dapat kembali ke atmosfer dengan berbagai cara pula, yaitu:
- Melalui pernafasan (respirasi) oleh tumbuhan dan binatang. Hal ini merupakan reaksi eksotermik dan termasuk juga di dalamnya penguraian glukosa (atau molekul organik lainnya) menjadi karbon dioksida dan air.
- Melalui pembusukan binatang dan tumbuhan. Fungi atau jamur dan bakteri mengurai senyawa karbon pada binatang dan tumbuhan yang mati dan mengubah karbon menjadi karbon dioksida jika tersedia oksigen, atau menjadi metana jika tidak tersedia oksigen.
- Melalui pembakaran material organik yang mengoksidasi karbon yang terkandung menghasilkan karbon dioksida (juga yang lainnya seperti asap). Pembakaran bahan bakar fosil seperti batu bara, produk dari industri perminyakan (petroleum), dan gas alam akan melepaskan karbon yang sudah tersimpan selama jutaan tahun di dalam geosfer. Hal inilah yang merupakan penyebab utama naiknya jumlah karbon dioksida di atmosfer.
- Produksi semen. Salah satu komponennya, yaitu kapur atau gamping atau kalsium oksida, dihasilkan dengan cara memanaskan batu kapur atau batu gamping yang akan menghasilkan juga karbon dioksida dalam jumlah yang banyak.
- Di permukaan laut dimana air menjadi lebih hangat, karbon dioksida terlarut dilepas kembali ke atmosfer.
- Erupsi vulkanik atau ledakan gunung berapi akan melepaskan gas ke atmosfer. Gas-gas tersebut termasuk uap air, karbon dioksida, dan belerang. Jumlah karbon dioksida yang dilepas ke atmosfer secara kasar hampir sama dengan jumlah karbon dioksida yang hilang dari atmosfer akibat pelapukan silikat; Kedua proses kimia ini yang saling berkebalikan ini akan memberikan hasil penjumlahan yang sama dengan nol dan tidak berpengaruh terhadap jumlah karbon dioksida di atmosfer dalam skala waktu yang kurang dari 100.000 tahun.
Karbon di biosfer
Sekitar 1900 gigaton karbon ada di dalam biosfer. Karbon adalah bagian yang penting dalam kehidupan di Bumi. Ia memiliki peran yang penting dalam struktur, biokimia, dan nutrisi pada semua sel makhluk hidup. Dan kehidupan memiliki peranan yang penting dalam siklus karbon:
- Autotrof adalah organisme yang menghasilkan senyawa organiknya sendiri dengan menggunakan karbon dioksida yang berasal dari udara dan air di sekitar tempat mereka hidup. Untuk menghasilkan senyawa organik tersebut mereka membutuhkan sumber energi dari luar. Hampir sebagian besar autotrof menggunakan radiasi matahari untuk memenuhi kebutuhan energi tersebut, dan proses produksi ini disebut sebagai fotosintesis. Sebagian kecil autotroph memanfaatkan sumber energi kimia, dan disebut kemosintesis. Autotroph yang terpenting dalam siklus karbon adalah pohon-pohonan di hutan dan daratan dan fitoplankton di laut. Fotosintesis memiliki reaksi 6CO2 + 6H2O → C6H12O6 + 6O2
- Karbon dipindahkan di dalam biosfer sebagai makanan heterotrop pada organisme lain atau bagiannya (seperti buah-buahan). Termasuk di dalamnya pemanfaatan material organik yang mati (detritus) oleh jamur dan bakteri untuk fermentasi atau penguraian.
Sebagian besar karbon meninggalkan biosfer melalui pernafasan atau respirasi. Ketika tersedia oksigen, respirasi aerobik terjadi, yang melepaskan karbon dioksida ke udara atau air di sekitarnya dengan reaksi C6H12O6 + 6O2 → 6CO2 + 6H2O. Pada keadaan tanpa oksigen, respirasi anaerobik lah yang terjadi, yang melepaskan metan ke lingkungan sekitarnya yang akhirnya berpindah ke atmosfer atau hidrosfer.
Pembakaran biomassa (seperti kebakaran hutan, kayu yang digunakan untuk tungku penghangat atau kayu bakar, dll.) dapat juga memindahkan karbon ke atmosfer dalam jumlah yang banyak.
Karbon juga dapat berpindah dari bisofer ketika bahan organik yang mati menyatu dengan geosfer (seperti gambut). Cangkang binatang dari kalsium karbonat yang menjadi batu gamping melalui proses sedimentasi.
Sisanya, yaitu siklus karbon di laut dalam, masih dipelajari. Sebagai contoh, penemuan terbaru bahwa rumah larvacean mucus (biasa dikenal sebagai "sinkers") dibuat dalam jumlah besar yang mana mampu membawa banyak karbon ke laut dalam seperti yang terdeteksi oleh perangkap sedimen. Karena ukuran dan kompisisinya, rumah ini jarang terbawa dalam perangkap sedimen, sehingga sebagian besar analisis biokimia melakukan kesalahan dengan mengabaikannya.
Penyimpanan karbon di biosfer dipengaruhi oleh sejumlah proses dalam skala waktu yang berbeda: sementara produktivitas primer netto mengikuti siklus harian dan musiman, karbon dapat disimpan hingga beberapa ratus tahun dalam pohon dan hingga ribuan tahun dalam tanah. Perubahan jangka panjang pada kolam karbon (misalnya melalui de- atau afforestation) atau melalui perubahan temperatur yang berhubungan dengan respirasi tanah) akan secara langsung memengaruhi pemanasan global.
Karbon di laut
Laut mengandung sekitar 36.000 gigaton karbon, dimana sebagian besar dalam bentuk ion bikarbonat. Karbon anorganik, yaitu senyawa karbon tanpa ikatan karbon-karbon atau karbon-hidrogen, adalah penting dalam reaksinya di dalam air. Pertukaran karbon ini menjadi penting dalam mengontrol pH di laut dan juga dapat berubah sebagai sumber (source) atau lubuk (sink) karbon. Karbon siap untuk saling dipertukarkan antara atmosfer dan lautan. Pada daerah upwelling, karbon dilepaskan ke atmosfer. Sebaliknya, pada daerah downwelling karbon (CO2) berpindah dari atmosfer ke lautan. Pada saat CO2 memasuki lautan, asam karbonat terbentuk:
CO2 + H2O ⇌ H2CO3
Reaksi ini memiliki sifat dua arah, mencapai sebuah kesetimbangan kimia. Reaksi lainnya yang penting dalam mengontrol nilai pH lautan adalah pelepasan ion hidrogen dan bikarbonat. Reaksi ini mengontrol perubahan yang besar pada pH:
H2CO3 ⇌ H+ + HCO3
Secara ringkas, daur karbon merupakan salah satu siklus biogeokimia dimana terjadi pertukaran / perpindahan karbon antara bidang-bidang biosfer, geosfer, hidrosfer, dan atmosfer. Kenapa sering dibarengi dengan oksigen??? hal ini karena siklus karbon sangat terkait dengan oksigen, terutama dalam hal fotosintesis dan respirasi. Sesuai dengan pengertian tadi, ada empat tempat keberadaan untuk karbon, yaitu : Biosfer (di dalam makhluk hidup), Geosfer (di dalam bumi), hidrosfer ( di air), dan atmosfer ( di udara). Siklus karbon terjadi di daratan dan perairan. tidak ada perbedaan yang significant karena tempat yang berbeda tersebut. Yang berbeda hanyalah organismenya.

PROSES DALAM SIKLUS KARBON

Secara umum,  karbon akan diambil dari udara oleh organisme fotoautotrof (tumbuhan, ganggang, dll yang mampu melaksanakan fotosintesis). organisme tersebut, sebut saja tumbuhan, akan memproses karbon menjadi bahan makanan yang disebut karbohidrat, dengan proses kimia sebagai berikut :
6 CO2 + 6 H2O (+Sinar Matahari yg diserap Klorofil) ↔ C6H12O6 + 6 O2
Karbondioksida + Air (+Sinar Matahari yg diserap Klorofil)↔ Glukosa + Oksigen
nah, hasil sintesa karbohidrat itu dimakan para makhluk hidup heterotrof sebagai makanan plus oksigen untuk bernafas. Ngga peduli makhluk herbivora, carnivora, atau omnivora, sumber pertama energi yang tersimpan dalam karbohidrat adalah tumbuhan. Karbon di dalam sistem respirasi akan dilepas kembali dalam bentuk CO2 yang nantinya dilepaskan saat pernafasan. Selain pelepasan CO2 ke udara saat pernafasan, para detrivor (pembusuk) juga melepaskan CO2 ke udara dalam proses pembusukan. Manusia juga tidak kalah peran dalam proses ini. Hasil segala pembakaran, mulai dari pembakaran sampah, pembakaran bahan bakar minyak di dalam kendaraan bermotor, asap pabrik, dan lain-lain juga melepaskan CO2 ke udara. CO2 di udara nantinya akan ditangkap oleh tumbuhan lagi dan siklus mulai dari awal lagi.

Di daratan, proses pengubahan CO2 menjadi karbohidrat dan melepaskan oksigen dilakukan oleh tumbuhan darat, sebaliknya, di daerah perairan, peran ini dimainkan oleh organisme-organisme fotoautotrof perairan seperti ganggang, fitoplankton, dan lain-lain. begitupula dengan peran yang melepaskan CO2 ke udara. Hal itu dilaksanakan oleh para detrovor dan organisme heterotrof. Di daratan ada manusia, kambing, sapi, harimau, dll. di lautan ada berbagai jenis ikan dan makhluk-makhluk perairan.

PERMASALAHAN DALAM SIKLUS KARBON

Di udara, konsentrasi karbondioksida sangat kecil bila dibandingkan dengan oksigen dan nitrogen (kurang dari 0,04 %). akan tetapi gas ini adalah gas rumah kaca yang berperan dalam efek rumah kaca. Penambahan gas ini dapat meningkatkan suhu udara di bumi. Sekarang ini, populasi tumbuhan semakin berkurang (banyak hutan rusak dan lain-lain ) sedangkan kedaraan bermotor bertambah banyak. Jadi kita bisa bayangkan bahwa pelepasan CO2 ke udara tidak sebanding dengan pengubahannya oleh tumbuhan menjadi Karbohidrat. ini akan mempengaruhi keseimbangan atmosfer dan keseimbangan ekosistem di bumi.

Penjelasan lebih lanjut yang cukup lengkap, penulis ambil dari Wikipedia bahasa Indonesia, ensiklopedia bebas. bahan berikut ini bisa digunakan sebagai tambahan.

Siklus karbon adalah siklus biogeokimia dimana karbon dipertukarkan antara biosfer, geosfer, hidrosfer, dan atmosfer Bumi (objek astronomis lainnya bisa jadi memiliki siklus karbon yang hampir sama meskipun hingga kini belum diketahui).
Dalam siklus ini terdapat empat reservoir karbon utama yang dihubungkan oleh jalur pertukaran. Reservoir-reservoir tersebut adalah atmosfer, biosfer teresterial (biasanya termasuk pula freshwater system dan material non-hayati organik seperti karbon tanah (soil carbon)), lautan (termasuk karbon anorganik terlarut dan biota laut hayati dan non-hayati), dan sedimen (termasuk bahan bakar fosil). Pergerakan tahuan karbon, pertukaran karbon antar reservoir, terjadi karena proses-proses kimia, fisika, geologi, dan biologi yang bermacam-macam. Lautan mengadung kolam aktif karbon terbesar dekat permukaan Bumi, namun demikian laut dalam bagian dari kolam ini mengalami pertukaran yang lambat dengan atmosfer.
Neraca karbon global adalah kesetimbangan pertukaran karbon (antara yang masuk dan keluar) antar reservoir karbon atau antara satu putaran (loop) spesifik siklus karbon (misalnya atmosfer - biosfer). Analisis neraca karbon dari sebuah kolam atau reservoir dapat memberikan informasi tentang apakah kolam atau reservoir berfungsi sebagai sumber (source) atau lubuk (sink) karbon dioksida.
Karbon di atmosfer
Bagian terbesar dari karbon yang berada di atmosfer Bumi adalah gas karbon dioksida (CO2). Meskipun jumlah gas ini merupakan bagian yang sangat kecil dari seluruh gas yang ada di atmosfer (hanya sekitar 0,04% dalam basis molar, meskipun sedang mengalami kenaikan), namun ia memiliki peran yang penting dalam menyokong kehidupan. Gas-gas lain yang mengandung karbon di atmosfer adalah metan dan kloroflorokarbon atau CFC (CFC ini merupakan gas artifisial atau buatan). Gas-gas tersebut adalah gas rumah kaca yang konsentrasinya di atmosfer telah bertambah dalam dekade terakhir ini, dan berperan dalam pemanasan global.
Karbon diambil dari atmosfer dengan berbagai cara:
- Ketika matahari bersinar, tumbuhan melakukan fotosintesa untuk mengubah karbon dioksida menjadi karbohidrat, dan melepaskan oksigen ke atmosfer. Proses ini akan lebih banyak menyerap karbon pada hutan dengan tumbuhan yang baru saja tumbuh atau hutan yang sedang mengalami pertumbuhan yang cepat.
- Pada permukaan laut ke arah kutub, air laut menjadi lebih dingin dan CO2 akan lebih mudah larut. Selanjutnya CO2 yang larut tersebut akan terbawa oleh sirkulasi termohalin yang membawa massa air di permukaan yang lebih berat ke kedalaman laut atau interior laut (lihat bagian solubility pump).
- Di laut bagian atas (upper ocean), pada daerah dengan produktivitas yang tinggi, organisme membentuk jaringan yang mengandung karbon, beberapa organisme juga membentuk cangkang karbonat dan bagian-bagian tubuh lainnya yang keras. Proses ini akan menyebabkan aliran karbon ke bawah (lihat bagian biological pump).
- Pelapukan batuan silikat. Tidak seperti dua proses sebelumnya, proses ini tidak memindahkan karbon ke dalam reservoir yang siap untuk kembali ke atmosfer. Pelapukan batuan karbonat tidak memiliki efek netto terhadap CO2 atmosferik karena ion bikarbonat yang terbentuk terbawa ke laut dimana selanjutnya dipakai untuk membuat karbonat laut dengan reaksi yang sebaliknya (reverse reaction).
Karbon dapat kembali ke atmosfer dengan berbagai cara pula, yaitu:
- Melalui pernafasan (respirasi) oleh tumbuhan dan binatang. Hal ini merupakan reaksi eksotermik dan termasuk juga di dalamnya penguraian glukosa (atau molekul organik lainnya) menjadi karbon dioksida dan air.
- Melalui pembusukan binatang dan tumbuhan. Fungi atau jamur dan bakteri mengurai senyawa karbon pada binatang dan tumbuhan yang mati dan mengubah karbon menjadi karbon dioksida jika tersedia oksigen, atau menjadi metana jika tidak tersedia oksigen.
- Melalui pembakaran material organik yang mengoksidasi karbon yang terkandung menghasilkan karbon dioksida (juga yang lainnya seperti asap). Pembakaran bahan bakar fosil seperti batu bara, produk dari industri perminyakan (petroleum), dan gas alam akan melepaskan karbon yang sudah tersimpan selama jutaan tahun di dalam geosfer. Hal inilah yang merupakan penyebab utama naiknya jumlah karbon dioksida di atmosfer.
- Produksi semen. Salah satu komponennya, yaitu kapur atau gamping atau kalsium oksida, dihasilkan dengan cara memanaskan batu kapur atau batu gamping yang akan menghasilkan juga karbon dioksida dalam jumlah yang banyak.
- Di permukaan laut dimana air menjadi lebih hangat, karbon dioksida terlarut dilepas kembali ke atmosfer.
- Erupsi vulkanik atau ledakan gunung berapi akan melepaskan gas ke atmosfer. Gas-gas tersebut termasuk uap air, karbon dioksida, dan belerang. Jumlah karbon dioksida yang dilepas ke atmosfer secara kasar hampir sama dengan jumlah karbon dioksida yang hilang dari atmosfer akibat pelapukan silikat; Kedua proses kimia ini yang saling berkebalikan ini akan memberikan hasil penjumlahan yang sama dengan nol dan tidak berpengaruh terhadap jumlah karbon dioksida di atmosfer dalam skala waktu yang kurang dari 100.000 tahun.
Karbon di biosfer
Sekitar 1900 gigaton karbon ada di dalam biosfer. Karbon adalah bagian yang penting dalam kehidupan di Bumi. Ia memiliki peran yang penting dalam struktur, biokimia, dan nutrisi pada semua sel makhluk hidup. Dan kehidupan memiliki peranan yang penting dalam siklus karbon:
- Autotrof adalah organisme yang menghasilkan senyawa organiknya sendiri dengan menggunakan karbon dioksida yang berasal dari udara dan air di sekitar tempat mereka hidup. Untuk menghasilkan senyawa organik tersebut mereka membutuhkan sumber energi dari luar. Hampir sebagian besar autotrof menggunakan radiasi matahari untuk memenuhi kebutuhan energi tersebut, dan proses produksi ini disebut sebagai fotosintesis. Sebagian kecil autotroph memanfaatkan sumber energi kimia, dan disebut kemosintesis. Autotroph yang terpenting dalam siklus karbon adalah pohon-pohonan di hutan dan daratan dan fitoplankton di laut. Fotosintesis memiliki reaksi 6CO2 + 6H2O → C6H12O6 + 6O2
- Karbon dipindahkan di dalam biosfer sebagai makanan heterotrop pada organisme lain atau bagiannya (seperti buah-buahan). Termasuk di dalamnya pemanfaatan material organik yang mati (detritus) oleh jamur dan bakteri untuk fermentasi atau penguraian.
Sebagian besar karbon meninggalkan biosfer melalui pernafasan atau respirasi. Ketika tersedia oksigen, respirasi aerobik terjadi, yang melepaskan karbon dioksida ke udara atau air di sekitarnya dengan reaksi C6H12O6 + 6O2 → 6CO2 + 6H2O. Pada keadaan tanpa oksigen, respirasi anaerobik lah yang terjadi, yang melepaskan metan ke lingkungan sekitarnya yang akhirnya berpindah ke atmosfer atau hidrosfer.
Pembakaran biomassa (seperti kebakaran hutan, kayu yang digunakan untuk tungku penghangat atau kayu bakar, dll.) dapat juga memindahkan karbon ke atmosfer dalam jumlah yang banyak.
Karbon juga dapat berpindah dari bisofer ketika bahan organik yang mati menyatu dengan geosfer (seperti gambut). Cangkang binatang dari kalsium karbonat yang menjadi batu gamping melalui proses sedimentasi.
Sisanya, yaitu siklus karbon di laut dalam, masih dipelajari. Sebagai contoh, penemuan terbaru bahwa rumah larvacean mucus (biasa dikenal sebagai "sinkers") dibuat dalam jumlah besar yang mana mampu membawa banyak karbon ke laut dalam seperti yang terdeteksi oleh perangkap sedimen. Karena ukuran dan kompisisinya, rumah ini jarang terbawa dalam perangkap sedimen, sehingga sebagian besar analisis biokimia melakukan kesalahan dengan mengabaikannya.
Penyimpanan karbon di biosfer dipengaruhi oleh sejumlah proses dalam skala waktu yang berbeda: sementara produktivitas primer netto mengikuti siklus harian dan musiman, karbon dapat disimpan hingga beberapa ratus tahun dalam pohon dan hingga ribuan tahun dalam tanah. Perubahan jangka panjang pada kolam karbon (misalnya melalui de- atau afforestation) atau melalui perubahan temperatur yang berhubungan dengan respirasi tanah) akan secara langsung memengaruhi pemanasan global.
Karbon di laut
Laut mengandung sekitar 36.000 gigaton karbon, dimana sebagian besar dalam bentuk ion bikarbonat. Karbon anorganik, yaitu senyawa karbon tanpa ikatan karbon-karbon atau karbon-hidrogen, adalah penting dalam reaksinya di dalam air. Pertukaran karbon ini menjadi penting dalam mengontrol pH di laut dan juga dapat berubah sebagai sumber (source) atau lubuk (sink) karbon. Karbon siap untuk saling dipertukarkan antara atmosfer dan lautan. Pada daerah upwelling, karbon dilepaskan ke atmosfer. Sebaliknya, pada daerah downwelling karbon (CO2) berpindah dari atmosfer ke lautan. Pada saat CO2 memasuki lautan, asam karbonat terbentuk:
CO2 + H2O ⇌ H2CO3
Reaksi ini memiliki sifat dua arah, mencapai sebuah kesetimbangan kimia. Reaksi lainnya yang penting dalam mengontrol nilai pH lautan adalah pelepasan ion hidrogen dan bikarbonat. Reaksi ini mengontrol perubahan yang besar pada pH:
H2CO3 ⇌ H+ + HCO3

DAUR SIKLUS AIR

Daur / siklus hidrologi, siklus air, atau siklus H2O adalah sirkulasi yang tidak pernah berhenti dari air di bumi dimana air dapat berpindah dari darat ke udara kemudian ke darat lagi bahkan tersimpan di bawah permukaan dalam tiga fasenya yaitu cair (air), padat (es), dan gas (uap air). Daur hidrologi merupakan salah satu dari daur biogeokimia. Siklus hidrologi memainkan peran penting dalam cuaca, iklim, dan ilmu meteorologi. Keberadaan siklus hidrologi sangat significant dalam kehidupan. kita tidak akan lama-lama di bagian pembukaan, ayo kita segera meluncur ke detail-detail dari proses siklus hidrologi.


Meskipun keseimbangan air di bumi tetap konstan dari waktu ke waktu, molekul air bisa datang dan pergi, dan keluar dari atmosfer. Air bergerak dari satu tempat ke tempat yang lain, seperti dari sungai ke laut, atau dari laut ke atmosfer, oleh proses fisik penguapan, kondensasi, presipitasi, infiltrasi, limpasan, dan aliran bawah permukaan. Dengan demikian, air berjalan melalui fase yang berbeda: cair, padat, dan gas.

Siklus hidrologi melibatkan pertukaran energi panas, yang menyebabkan perubahan suhu. Misalnya, dalam proses penguapan, air mengambil energi dari sekitarnya dan mendinginkan lingkungan. Sebaliknya, dalam proses kondensasi, air melepaskan energi dengan lingkungannya, pemanasan lingkungan. Siklus air secara signifikan berperan dalam pemeliharaan kehidupan dan ekosistem di Bumi. Bahkan saat air dalam reservoir masing-masing memainkan peran penting, siklus air membawa signifikansi ditambahkan ke dalam keberadaan air di planet kita. Dengan mentransfer air dari satu reservoir ke yang lain, siklus air memurnikan air, mengisi ulang tanah dengan air tawar, dan mengangkut mineral ke berbagai bagian dunia. Hal ini juga terlibat dalam membentuk kembali fitur geologi bumi, melalui proses seperti erosi dan sedimentasi. Selain itu, sebagai siklus air juga melibatkan pertukaran panas, hal itu berpengaruh pada kondisi iklim di bumi.

Sebelum kita menginjak pada proses siklus hidrologi, mari kita pelajari istilah-istilah berikut ini :

Presipitasi
Uap air yang jatuh ke permukaan bumi. Sebagian besar presipitasi terjadi sebagai hujan, tetapi di samping itu, presipitasi juga menjadi salju, hujan es (hail), kabut menetes (fog drip), graupel, dan hujan es (sleet). Sekitar 505.000 km3 (121.000 cu mil) air jatuh sebagai presipitasi setiap tahunnya, 398.000 km3 (95.000 cu mi) dari terjadi di atas lautan.
Canopy intersepsi
Pengendapan yang dicegat oleh dedaunan tanaman dan akhirnya menguap kembali ke atmosfer daripada jatuh ke tanah.
Pencairan salju
Limpasan yang dihasilkan oleh salju mencair.
Limpasan (runoff)
Berbagai cara dengan mana air bergerak di seluruh negeri. Ini mencakup baik limpasan permukaan (surface runoff) dan limpasan saluran (channel runoff). Karena mengalir, air dapat merembes ke dalam tanah, menguap ke udara, menjadi disimpan di danau atau waduk, atau diekstraksi untuk keperluan manusia pertanian atau lainnya.
Infiltrasi
Aliran air dari permukaan tanah ke dalam tanah. Setelah disusupi, air menjadi kelembaban tanah (soil moisture) atau air tanah (groundwater).
Arus Bawah Permukaan
Aliran air bawah tanah, di zona Vadose dan akuifer. Air bawah permukaan dapat kembali ke permukaan (misalnya sebagai pegas atau dipompa) atau akhirnya meresap ke dalam lautan. Air kembali ke permukaan tanah pada elevasi lebih rendah dari tempat itu disusupi, di bawah tekanan gaya gravitasi atau gravitasi diinduksi. Tanah cenderung bergerak lambat, dan diisi kembali perlahan-lahan, sehingga dapat tetap dalam akuifer selama ribuan tahun.
Penguapan
Transformasi air dari cair ke fase gas ketika bergerak dari tanah atau badan air ke atmosfer atasnya. Sumber energi untuk penguapan terutama radiasi matahari. Penguapan banyak yang implisit meliputi transpirasi dari tanaman, meskipun bersama-sama mereka secara khusus disebut sebagai evapotranspirasi. Jumlah evapotranspirasi tahunan total sekitar 505.000 km3 (121.000 cu mi) volume air, 434.000 km3 (104.000 cu mi) yang menguap dari lautan.
Sublimasi
Perubahan wujud secara langsung dari air padat (salju atau es) untuk uap air.
Adveksi
Gerakan air - dalam wujud padat, cair, atau uap - melalui atmosfer. Tanpa adveksi, air yang menguap dari lautan tidak bisa jatuh sebagai presipitasi di atas tanah.
Kondensasi
Transformasi uap air untuk tetesan air cair di udara, awan dan kabut adalah wujudnya.
Transpirasi
Pelepasan uap air dari tanaman dan tanah ke udara. Uap air adalah gas yang tidak dapat dilihat.

PROSES SIKLUS HIDROLOGI

Sama seperti proses fotosintesis pada siklus karbon, matahari juga berperan penting dalam siklus hidrologi. Matahari merupakan sumber energi yang mendorong siklus air, memanaskan air dalam samudra dan laut. Akibat pemanasan ini, air menguap sebagai uap air ke udara. 90 % air yang menguap berasal dari lautan. Es dan salju juga dapat menyublim dan langsung menjadi uap air. Selain itu semua, juga terjadi evapotranspirasi air terjadi dari tanaman dan menguap dari tanah yang menambah jumlah air yang memasuki atmosfer.

Setelah air tadi menjadi uap air, Arus udara naik mengambil uap air agar bergerak naik sampai ke atmosfir. Semakin tinggi suatu tempat, suhu udaranya akan semakin rendah. Nantinya suhu dingin di atmosfer menyebabkan uap air mengembun menjadi awan. Untuk kasus tertentu, uap air berkondensasi di permukaan bumi dan membentuk kabut.

Arus udara (angin) membawa uap air bergerak di seluruh dunia. Banyak proses meteorologi terjadi pada bagian ini. Partikel awan bertabrakan, tumbuh, dan air jatuh dari langit sebagai presipitasi. Beberapa presipitasi jatuh sebagai salju atau hail, sleet, dan dapat terakumulasi sebagai es dan gletser, yang dapat menyimpan air beku untuk ribuan tahun. Snowpack (salju padat) dapat mencair dan meleleh, dan air mencair mengalir di atas tanah sebagai snowmelt (salju yang mencair). Sebagian besar air jatuh ke permukaan dan kembali ke laut atau ke tanah sebagai hujan, dimana air mengalir di atas tanah sebagai limpasan permukaan. 

Sebagian dari limpasan masuk sungai, got, kali, lembah, dan lain-lain. Semua aliran itu bergerak menuju lautan. sebagian limpasan menjadi air tanah disimpan sebagai air tawar di danau. Tidak semua limpasan mengalir ke sungai, banyak yang meresap ke dalam tanah sebagai infiltrasi. Infiltrat air jauh ke dalam tanah dan mengisi ulang akuifer, yang merupakan toko air tawar untuk jangka waktu yang lama. Sebagian infiltrasi tetap dekat dengan permukaan tanah dan bisa merembes kembali ke permukaan badan air (dan laut) sebagai debit air tanah. Beberapa tanah menemukan bukaan di permukaan tanah dan keluar sebagai mata air air tawar. Seiring waktu, air kembali ke laut, di mana siklus hidrologi kita mulai.

PERAN DALAM SIKLUS BIOGEOKIMIA

Selain siklus hidrologi adalah siklus biogeokimia sendiri, aliran air di atas dan di bawah bumi adalah komponen kunci dari perputaran siklus biogeokimia lainnya. Limpasan bertanggung jawab untuk hampir semua transportasi sedimen terkikis dan fosfor dari darat ke badan air. Salinitas lautan berasal dari erosi dan transportasi garam terlarut dari tanah. Eutrofikasi danau terutama disebabkan fosfor, diterapkan lebih untuk bidang pertanian di pupuk, dan kemudian diangkut sungai darat dan bawah. Limpasan dan aliran air tanah memainkan peran penting dalam pengangkutan nitrogen dari tanah ke badan air. Zona mati di outlet Sungai Mississippi merupakan konsekuensi dari nitrat dari pupuk terbawa bidang pertanian dan disalurkan ke sistem sungai ke Teluk Meksiko. Limpasan juga memainkan peran dalam siklus karbon, sekali lagi melalui pengangkutan batu terkikis dan tanah.

DAUR SIKLUS NITROGEN

adalah nitrogen). Meskipun demikian, penggunaan nitrogen pada bidang biologis sangatlah terbatas. Nitrogen merupakan unsur yang tidak reaktif (sulit bereaksi dengan unsur lain) sehingga dalam penggunaan nitrogen pada makhluk hidup diperlukan berbagai proses, yaitu : fiksasi nitrogen, mineralisasi, nitrifikasi, denitrifikasi.

Siklus nitrogen sendiri adalah suatu proses konversi senyawa yang mengandung unsur nitrogen menjadi berbagai macam bentuk kimiawi yang lain. Transformasi ini dapat terjadi secara biologis maupun non-biologis. Siklus nitrogen secara khusus sangat dibutuhkan dalam ekologi karena ketersediaan nitrogen dapat mempengaruhi tingkat proses ekosistem kunci, termasuk produksi primer dan dekomposisi. Aktivitas manusia seperti pembakaran bahan bakar fosil, penggunaan pupuk nitrogen buatan, dan pelepasan nitrogen dalam air limbah telah secara dramatis mengubah siklus nitrogen global. Pembukaannya sudah cukup, sekarang kita menginjak ke detail proses daur / siklus nitrogen.

FUNGSI DALAM EKOLOGI

Nitrogen sangatlah penting untuk berbagai proses kehidupan di Bumi. Nitrogen adalah komponen utama dalam semua asam amino, yang nantinya dimasukkan ke dalam protein, tahu kan kalau protein adalah zat yang sangat kita butuhkan dalam pertumbuhan. Nitrogen juga hadir di basis pembentuk asam nukleat, seperti DNA dan RNA yang nantinya membawa hereditas. Pada tumbuhan, banyak dari nitrogen digunakan dalam molekul klorofil, yang penting untuk fotosintesis dan pertumbuhan lebih lanjut. Meskipun atmosfer bumi merupakan sumber berlimpah nitrogen, sebagian besar relatif tidak dapat digunakan oleh tanaman. Pengolahan kimia atau fiksasi alami (melalui proses konversi seperti yang dilakukan bakteri rhizobium), diperlukan untuk mengkonversi gas nitrogen menjadi bentuk yang dapat digunakan oleh organisme hidup, oleh karena itu nitrogen menjadi komponen penting dari produksi pangan. Kelimpahan atau kelangkaan dari bentuk "tetap" nitrogen, (juga dikenal sebagai nitrogen reaktif), menentukan berapa banyak makanan yang dapat tumbuh pada sebidang tanah.

PROSES-PROSES DALAM DAUR NITROGEN

Nitrogen hadir di lingkungan dalam berbagai bentuk kimia termasuk nitrogen organik, amonium (NH4 +), nitrit (NO2-), nitrat (NO3-), dan gas nitrogen (N2). Nitrogen organik dapat berupa organisme hidup, atau humus, dan dalam produk antara dekomposisi bahan organik atau humus dibangun. Proses siklus nitrogen mengubah nitrogen dari satu bentuk kimia lain. Banyak proses yang dilakukan oleh mikroba baik untuk menghasilkan energi atau menumpuk nitrogen dalam bentuk yang dibutuhkan untuk pertumbuhan. Diagram di atas menunjukkan bagaimana proses-proses cocok bersama untuk membentuk siklus nitrogen (lihat gambar).

1. Fiksasi Nitrogen

Fiksasi nitrogen adalah proses alam, biologis atau abiotik yang mengubah nitrogen di udara menjadi ammonia (NH3). Mikroorganisme yang mem-fiksasi nitrogen disebut diazotrof. Mikroorganisme ini memiliki enzim nitrogenaze yang dapat menggabungkan hidrogen dan nitrogen. Reaksi untuk fiksasi nitrogen biologis ini dapat ditulis sebagai berikut :
N2 + 8 H+ + 8 e− → 2 NH3 + H2
Mikro organisme yang melakukan fiksasi nitrogen antara lain : Cyanobacteria, Azotobacteraceae, Rhizobia, Clostridium, dan Frankia. Selain itu ganggang hijau biru juga dapat memfiksasi nitrogen. Beberapa tanaman yang lebih tinggi, dan beberapa hewan (rayap), telah membentuk asosiasi (simbiosis) dengan diazotrof. Selain dilakukan oleh mikroorganisme, fiksasi nitrogen juga terjadi pada proses non-biologis, contohnya sambaran petir. Lebih jauh, ada empat cara yang dapat mengkonversi unsur nitrogen di atmosfer menjadi bentuk yang lebih reaktif :

a. Fiksasi biologis: beberapa bakteri simbiotik (paling sering dikaitkan dengan tanaman polongan) dan beberapa bakteri yang hidup bebas dapat memperbaiki nitrogen sebagai nitrogen organik. Sebuah contoh dari bakteri pengikat nitrogen adalah bakteri Rhizobium mutualistik, yang hidup dalam nodul akar kacang-kacangan. Spesies ini diazotrophs. Sebuah contoh dari hidup bebas bakteri Azotobacter.
b. Industri fiksasi nitrogen : Di bawah tekanan besar, pada suhu 600 C, dan dengan penggunaan katalis besi, nitrogen atmosfer dan hidrogen (biasanya berasal dari gas alam atau minyak bumi) dapat dikombinasikan untuk membentuk amonia (NH3). Dalam proses Haber-Bosch, N2 adalah diubah bersamaan dengan gas hidrogen (H2) menjadi amonia (NH3), yang digunakan untuk membuat pupuk dan bahan peledak.
c. Pembakaran bahan bakar fosil : mesin mobil dan pembangkit listrik termal, yang melepaskan berbagai nitrogen oksida (NOx).
d. Proses lain: Selain itu, pembentukan NO dari N2 dan O2 karena foton dan terutama petir, dapat memfiksasi nitrogen.

2. Asimilasi

Tanaman mendapatkan nitrogen dari tanah melalui absorbsi akar baik dalam bentuk ion nitrat atau ion amonium. Sedangkan hewan memperoleh nitrogen dari tanaman yang mereka makan.
Tanaman dapat menyerap ion nitrat atau amonium dari tanah melalui rambut akarnya. Jika nitrat diserap, pertama-tama direduksi menjadi ion nitrit dan kemudian ion amonium untuk dimasukkan ke dalam asam amino, asam nukleat, dan klorofil. Pada tanaman yang memiliki hubungan mutualistik dengan rhizobia, nitrogen dapat berasimilasi dalam bentuk ion amonium langsung dari nodul. Hewan, jamur, dan organisme heterotrof lain mendapatkan nitrogen sebagai asam amino, nukleotida dan molekul organik kecil.

3. Amonifikasi

Jika tumbuhan atau hewan mati, nitrogen organik diubah menjadi amonium (NH4+) oleh bakteri dan jamur.

4. Nitrifikasi

Konversi amonium menjadi nitrat dilakukan terutama oleh bakteri yang hidup di dalam tanah dan bakteri nitrifikasi lainnya. Tahap utama nitrifikasi, bakteri nitrifikasi seperti spesies Nitrosomonas mengoksidasi amonium (NH4 +) dan mengubah amonia menjadi nitrit (NO2-). Spesies bakteri lain, seperti Nitrobacter, bertanggung jawab untuk oksidasi nitrit menjadi dari nitrat (NO3-). Proses konversi nitrit menjadi nitrat sangat penting karena nitrit merupakan racun bagi kehidupan tanaman.

Proses nitrifikasi dapat ditulis dengan reaksi berikut ini :


  1. NH3 + CO2 + 1.5 O2 + Nitrosomonas → NO2- + H2O + H+
  2. NO2- + CO2 + 0.5 O2 + Nitrobacter → NO3-
  3. NH3 + O2 → NO2 + 3H+ + 2e
  4. NO2 + H2O → NO3 + 2H+ + 2e
note : "Karena kelarutannya yang sangat tinggi, nitrat dapat memasukkan air tanah. Peningkatan nitrat dalam air tanah merupakan masalah bagi air minum, karena nitrat dapat mengganggu tingkat oksigen darah pada bayi dan menyebabkan sindrom methemoglobinemia atau bayi biru. Ketika air tanah mengisi aliran sungai, nitrat yang memperkaya air tanah dapat berkontribusi untuk eutrofikasi, sebuah proses dimana populasi alga meledak, terutama populasi alga biru-hijau. Hal ini juga dapat menyebabkan kematian kehidupan akuatik karena permintaan yang berlebihan untuk oksigen. Meskipun tidak secara langsung beracun untuk ikan hidup (seperti amonia), nitrat dapat memiliki efek tidak langsung pada ikan jika berkontribusi untuk eutrofikasi ini." 
5. Denitrifikasi

Denitrifikasi adalah proses reduksi nitrat untuk kembali menjadi gas nitrogen (N2), untuk menyelesaikan siklus nitrogen. Proses ini dilakukan oleh spesies bakteri seperti Pseudomonas dan Clostridium dalam kondisi anaerobik. Mereka menggunakan nitrat sebagai akseptor elektron di tempat oksigen selama respirasi. Fakultatif anaerob bakteri ini juga dapat hidup dalam kondisi aerobik.

Denitrifikasi umumnya berlangsung melalui beberapa kombinasi dari bentuk peralihan sebagai berikut:
NO3 → NO2 → NO + N2O → N2 (g)
Proses denitrifikasi lengkap dapat dinyatakan sebagai reaksi redoks:
2 NO3 + 10 e + 12 H+ → N2 + 6 H2O
6. Oksidasi Amonia Anaerobik

Dalam proses biologis, nitrit dan amonium dikonversi langsung ke elemen (N2) gas nitrogen. Proses ini membentuk sebagian besar dari konversi nitrogen unsur di lautan. Reduksi dalam kondisi anoxic juga dapat terjadi melalui proses yang disebut oksidasi amonia anaerobik
NH4+ + NO2 → N2 + 2 H2O

Selasa, 06 Desember 2011

Orang Cacat Yang Berprestasi Hebat

Sebuah pelajaran dan kisah inspirasi yang kita dapatkan dari orang-orang yang mempunyai fisik tidak sempurna atau cacad. Mereka memang tidak mempunyai fisik sempurna seperti kita, tapi mereka mempunyai segudang prestasi yang mungkin belum tentu kita dapat menyamainya. Berikut ini adalah orang-orang yang tidak mempunyai fisik sempurna dengan segudang prestasi yang saya dapatkan dari forumvivanews :
7. Ludwig Van Beethoven
Kekurangan : Tuli
Beethoven sudah dianggap sebagai salah satu pengarang lagu terhebat sepanjang sejarah. Ia melakukan pertunjukkan pertamanya sebagai pianis pada usia 8 tahun. Pada usia 20an ia menjadi terkenal sebagai seorang pianis handalyang memiliki bakat tak terduga dan improvisasi yang menakjubkan. Tetapi pada tahun 1796, Beethoven mulai kehilangan pendengarannya. Hal tersebut malah membuatnya lebih termotivasi untuk menciptakan berbagai karya musikal yang terkenal sampai sekarang : the 9th Symphony, the 5th Piano Concerto, the Violin Concerto, the Late Quartets, and his Missa Solemnis. Dan dia mencapai semua ini padahal ia telah menjadi tuli selama 25 tahun atau lebih.
6. Frida Kahlo
Kekurangan : Polio
Frida adalah seorang pelukis mexico yang kebanyakan karyanya adalah lukisan yang menggambarkan duka yang mendalam di dalam hidupnya. Ia kerap menggunakan warna-warna yang terinspirasi oleh kebudayaan mexico. Frida terkena polio pada usia 6 tahun, yang menyebabkan kaki kanannya lebih kecil daripada kaki kirinya. Kekurangannya ini dia tutupi dengan mengenakan rok panjang yang berwarna warni. Selain polio, ia juga menderita penyakit Spina Bifilda yang mengakibatkan rasa sakit pada tulang punggung dan kaki dan membuatnya hampir tidak bisa berjalan. Walau pada akhirnya ia dapat kembali berjalan, ia mengaku telah menderita sakit yang sama seumur hidupnya.
5. Christy Brown
Kekurangan : Cerebral Palsy
Christy Brown adalah seorang Pengarang, Pelukis, dan penyair asal Irlandia yang menderita Cerebral Palsy, yang membuatnya tidak dapat bergerak dan berbicara secara normal. Para dokter juga menyatakan bahwa dia juga memiliki keterbelakangan mental. Namun ibunya tetap mencoba berbicara dengannya, mengajarkannya berbagai hal. Pada suatu hari ia menyambar sepotong kapur dari tangan kakaknya dengankaki kirinya dan membuat tanda dengan kapur itu. Sampai umur 5 tahun hanya kaki kirinya yang bisa bergerak sesuai keinginnannya. Ia menggunakan kaki ini untuk berkomunikasi, yang nantinya ia jadikan judul otobiografinya, “My Left Foot”.
4. John Nash
Kekurangan : Schizophrenia (kelainan otak yang kronis, parah dan membuatnya tidak berfungsi)
John Forbes Nash adalah seorang Ilmuwan matematik Amerika. Pada masa kecilnya, ia sangat tertarik pada sains sehingga mencoba berbagai percobaan kecil di kamar tidurnya. Ia kemudian mempelajari Indusri kimia dan Matematika pada Carnegie Mellon Univeristy. Pada tahun 1959, ia mulai menunjukkan perilaku aneh menyerupai paranoia. Ia mempercayai bahwa ada organisasi yang sedang mengincarnya. Kemudian ia dimasukkan ke sebuah rumah kejiwaan dimana ia di diagnosa menderita schizophrenia. Karya-karya dan sumbangsihnya mendapat banyak penghargaan, termasuk beberapa penghargaan elit berupa John von Neumann Theory Prize in the year 1978 dan Nobel Memorial Prize in Economic Sciences pada tahun 1994. Sebuah film Academy Awardyang berjudul “A Beautiful Mind” dengan pemeran Russel Crowe memiliki cerita yang berdasar pada Biografinya.
3. Jean-Dominique Bauby
Kekurangan : Locked – In Syndrome
Jean – Do adalah seorang Editor, penulis dan jurnalis kenamaan dari majalah Prancis ELLE. Pada tahun 1995, ia menderita serangan jantungyang sangat parah dan mengakibatkan ia jatuh ke dalam koma selama 20 hari. Setelah bangun dari koma, Ia mendapatkan dirinya menderita sebuah sindrom syarafyang sangat langka bernama Locked In Syndrome. Sindrom ini membuat si penderita lumpuh dari ujung kepala hingga ujung kaki, namun tetap memiliki pikiran yang sadar. Dalam kasus ini, Jean-Do tetap dapat mengedipkan matanya.
Mengabaikan kondisinya, Jean-Do tetap mampu menulis sebuah buku berjudul Diving Bell and the Butterfly dengan cara Mengedipkan matanya ketika penulis yang membantunya menunjuk huruf yang benar. Jean-Do harus mengedit dan mengarang buku tsb sepenuhnya dalam kepalanya, huruf demi huruf. Jean-Do meninggal 2 hari kemudian setelah buku tsb di rilis.
2. Stephen Hawking
Kekurangan : Penyakit Motor Neuron
Stephen William Hawking adalah seorang ilmuwan fisika ternama asal Inggris. Buku-buku dan penampilan publiknya telah menjadikannya selebriti akademis. pada tahun 2009 ia juga mendapatkan Medali presidensial atas kebebasan, Penghargaan sipil tertinggi di USA. Saat masih menempuh pendidikan di Cambridge, Stephen Hawking terjatuh dari tanggayang kelak akan membuatnya menderita penyakit motor neuron yang membuatnya lumpuh. Ia lebih takut kehilangan kejeniusannya sehingga ia lebih dahulu memeriksakan intelektualnya lewat Mensa test. Diagnosis penyakit syarafnya diketahui saat umurnya mencapai 21 tahun, dimana ia mulai kehilangan kontrol atas tangan dan kakinya, sampai akhirnya ia lumpuh total pada tahun 2009.
1. Helen Keller
Kekurangan : Buta dan Tuli
Helen Adamns Keller adalah seorang penulis, aktivis politik dan pengajar asal Amerika. Ia juga orang buta tuli pertama yang berhasil menyelesaikan kuliah seni, berkat jasa gurunya, Annie Sullivan yang berhasil mengajarkan Helen cara berkomunikasi tanpa bahasa. Ia mengajarkan Helen untuk berkomunikasi dengan mengeja huruf pada tangannya, dimulai dari huruf D-O-L-L untuk boneka yang diberikan oleh Sullivan untuk Helen pada hari ulang tahunnya. Helen juga ikut aktif mengkampanyekan hak wanita untuk memilih di pemilu, hak buruh, dan sosialisme. Pada tahun 1920, ia membantu pendirian American Civil Liberties Union (ACLU). Keller telah bertemu semua presiden amerika sejak Grover Cleveland sampai Lyndon B. Johnson. Ia juga merupakan teman baik dari beberapa figur kenamaan termasuk Alexander Graham Bell, Charlie Chaplin, dan Mark Twain.[artikelbusuk]

Kamis, 27 Oktober 2011

MAHABARATA

Mahabarata adalah buku epos atau wiracarita sastra Hindu klasik yang berkisah tentang kehidupan pahlawan yang perkembangan dan pertumbuhannya berlangsung antara masa 400 tahun sebelum Masehi hingga 400 tahun sesudah Masehi. Diikarang oleh Wiyasa, epos ini terdiri dari 100.000 seloka (tiap seloka terdiri atas dua baris dan tiap baris terdiri atas 16 suku kata). Kisah ini juga terbagi atas 18 jilid (atau disebut parwa) sehingga kisah Mahabarata disebut juga sebagai Astadasaparwa.
Di Indonesia, epos ini pada mulanya disadur ke dalam bahasa Jawa, pada tahun 1000, ketika raja Darmawangsa berkuasa. Nanti pada abad ke-15 epos ini disadur ke dalam bahasa Melayu dengan menggunakan huruf Jawi (Kawi).
Bagian-bagian cerita yang sempat disadur ke dalam bahasa Melayu ketika itu meliputi:
  1. Hikayat Pandawa Lima
  2. Hikayat Perang Pandawa Jaya
  3. Hikayat Sang Boma
  4. Hikayat Langlang Buana
Isi epos Mahabarata secara garis besar mengisahkan kehidupan Santanu (Çantanu) seorang raja yang perkasa keturunan keluarga Kuru dan bertakhta di kerajaan Barata. Bersama permaisurinya Dewi Gangga, mereka dikaruniai seorang putra bernama Bisma.
Pada suatu hari Çantanu jatuh cinta pada seorang anak raja nelayan bernama Setyawati. Namun ayahanda Setyawati hanya mau memberikan putrinya jika Çantanu kelak mau menobatkan anaknya dari Setyawati sebagai putra mahkota pewaris takhta dan bukannya Bisma. Karena syarat yang berat ini Çantanu terus bersedih. Melihat hal ini, Bisma yang tahu mengapa ayahnya demikian, merelakan haknya atas takhta di Barata diserahkan kepada putra yang kelak lahir dari Setyawati. Bahkan bisma berjanji tidak akan menuntut itu kapan pun dan berjanji tidak akan menikah agar kelak tidak mendapat anak untuk mewarisi takhta Çantanu.
Perkawinan Çantanu dan Setyawati melahirkan dua orang putra masing-masing Citranggada dan Wicitrawirya. Namun kedua putra ini meninggal dalam pertempuran tanpa meninggalkan keturunan. Karena takut punahnya keturunan raja, Setyawati memohon kepada Bisma agar menikah dengan dua mantan menantunya yang ditinggal mati oleh Wicitrawirya, masing-masing Ambika dan Ambalika. Namun permintaan ini ditolak Bisma mengingat sumpahnya untuk tidak menikah.
Akhirnya Setyawati meminta kepada Wiyasa anaknya dari perkawinan yang lain, untuk menikah dengan Ambika dan Ambalika. Perkawinan dengan Ambika melahirkan Destarasta dan dengan Ambalika melahirkan Pandu. Destarasta lalu menikah dengan Gandari dan melahirkan seratus orang anak, sedangkan Pandu menikahi Kunti dan Madrim tapi tidak mendapat anak. Nanti ketika Kunti dan Madrim kawin dengan dewa-dewa, Kunti melahirkan 3 orang anak masing dengan dewa Darma lahirlah Yudistira, dengan dewa Bayu lahir Werkodara atau Bima dan dengan dewa Surya lahirlah Arjuna. Sedangkan Madrim yang menikah dengan dewa kembar Aҫwin, lahir anak kembar bernama Nakula dan Sadewa.
Selanjutnya, keturunan-keturuan itu dibagi dua yakni keturunan Destarasta disebut Kaum Kurawa sedangkan keturunan Pandu disebut kaum Pandawa.
Sebenarnya Destarasta berhak mewarisi takhta ayahnya, tapi karena ia buta sejak lahir, maka takhta itu kemudian diberikan kepada Pandu. Hal ini pada kemudian hari menjadi sumber bencana antara kaum Pandawa dan Kurawa dalam memperebutkan takhta sampai berlarut-larut, hingga akhirnya pecah perang dahsyat yang disebut baratayuda yang berarti peperangan memperebutkan kerajaan Barata.
Peperangan diawali dengan aksi judi dimana kaum Pandawa kalah. Kekalahan ini menyebabkan mereka harus mengembara di hutan belantara selama dua belas tahun. Setelah itu, pada tahun ke-13 sesuai perjanjian dengan Kurawa, para Pandawa harus menyembunyikan diri di tempat tertentu. Namun para Pandawa memustuskan untuk bersembunyi di istana raja Matsya. Pada tahun berikutnya, para Pandawa keluar dari persembunyian dan memperlihatkan diri di muka umum lalu menuntut hak mereka kepada Kurawa. Namun tuntutan mereka tidak dipenuhi Kurawa hingga terjadi perang 18 hari yang menyebabkan lenyapnya kaum Kurawa. Dengan demikian, kaum Pandawa dengan leluasa mengambil alih kekuasaan di Barata.